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Abstract 

 
Experimental methodology for evaluating 

classification algorithms in relational (i.e., networked) 
data is complicated by dependencies between related 
data instances. We survey the literature on relational 
classifiers and examine the various experimental 
methodologies reported therein. Our survey reveals 
that methodologies fall into two main groups, based on 
distinct formulations of the classification problem: (1) 
between-network classification and (2) within-network 
classification. While the methodology for the between-
network setting is relatively straightforward, 
methodologies for within-network classification are 
more complex and varied. We explore a number of 
these variations and present experimental results to 
illustrate important similarities and differences among 
different methodologies for within-network 
classification. 
 
1. Introduction 

 
Traditional classification techniques utilize 

dependencies between attributes of a single data 
instance to infer unknown values of an attribute of 
interest (a.k.a. the class label). Relational classifiers 
improve classification performance by taking 
advantage of dependencies between attributes of 
related instances. While these inter-instance 
dependencies can provide a great deal of useful 
information in a classification setting, they also 
complicate the experimental methodology used for the 
evaluation of relational classifiers. 

In traditional classification problems, each instance 
is represented as a vector of attribute values or as a 
row in a table. Instances are assumed to be 

independent in the sense that there is no correlation 
between attribute values of separate instances (i.e., 
there are assumed to be correlations within each row, 
but none across rows). In relational classification 
problems, an instance is often represented as a single 
attributed node in a network of nodes. In this setting, 
individual nodes are connected to one another by links 
representing some relationship between the nodes. For 
instance, nodes may represent people and links may 
represent friendships between people. 

A common strategy for evaluating traditional 
machine learning techniques is to partition a fully 
labeled data set into disjoint training and test sets. A 
classifier is trained using each example from the 
training set and then evaluated by removing the true 
class labels from the test set and measuring how 
accurately the classifier can recover the test labels. In 
the case of relational data, if we simply partition the 
nodes in a network (i.e., the instances) into completely 
disconnected sets, we risk altering the structure of the 
network in significant ways that may affect the 
performance of a relational classifier. Put another way, 
since the connections between instances in relational 
data are an important source of information, care must 
be exercised to avoid severing important connections. 
Any reasonable experimental methodology for 
classification in relational data must take into account 
the dependencies between instances. 

In this paper, we survey the literature to gain insight 
into the experimental methodology employed by 
various researchers of relational classification 
techniques. Section 2 introduces a generalized version 
of the network classification problem and presents the 
two most common methodological variants from the 
literature in terms of this generalized problem 
formulation. Sections 3 and 4 describe, in more detail, 
each of these common variants: between-network 



 2

classification and within-network classification. In 
Section 5, we present results from various 
methodologies on a classification task for the Enron 
email data set. Our results illustrate important 
similarities and differences between the various 
methodologies discussed. Section 6 concludes the 
paper. 
 
2. Network Classification 
 

Relational data are naturally represented as 
networks of attributed nodes (representing concepts) 
and links (representing relations between concepts). 
Network classification involves inferring unknown 
values of the attributes of nodes or links in a network 
(a.k.a. "labeling" unlabeled nodes or links). To date, 
most researchers have focused on labeling nodes rather 
than links. Therefore, this survey takes a node-centric 
view as well. 

A survey of the literature on relational 
classification reveals two related, but distinct, 
formulations of the network classification problem. 
We refer to these as between-network classification 
and within-network classification, respectively. We 
suggest that both the between and within-network 
formulations of the problem are actually special cases 
of a more general problem formulation. Here we 
present the generalized formulation and then use it 
describe the more specific formulations. 

In the generalized network classification problem, 
we are given a single graph1 G, which contains zero or 
more labeled nodes and one or more unlabeled nodes. 
Our task is to label a specific subset of the unlabeled 
nodes in G (i.e., the "test set"). This general 
formulation leaves room for a number of variations, 
including: 

1. G may consist of a single connected 
component, or two or more disconnected 
fragments. Note that there is no requirement 
for G to have any links.  

2. The test set may include all unlabeled nodes in 
G or a proper subset of the unlabeled nodes. 

3. Individual nodes in the test set may or may not 
have links to labeled nodes in the training set. 

4. Individual nodes in the test set may or may not 
have non-class attributes with known values 
(such as education level when the class 
attribute is job title). 

                                                           
1 We use the terms relational data, networked data, and graph 
interchangeably. 

5. The problem may be solved using induction 
(i.e., learning a general statistical model from 
the training data and using it to classify future 
data) or transduction (i.e., classifying a 
particular set of test instances from the training 
instances). In fact, the generalized formulation 
says nothing about how the problem should be 
solved, leaving open the possibility of 
unsupervised approaches, etc. Note that when 
the number of labeled instances is zero, the 
problem necessitates an unsupervised 
approach. 

In between-network classification, G is made up of 
two connected components, Gtrain and Gtest, which are 
disconnected from one another. Gtrain is fully labeled 
and Gtest is partially labeled (i.e., Gtest contains zero or 
more labeled nodes). The training set consists of all 
nodes in Gtrain. The test set consists of all unlabeled 
nodes in Gtest. In this setting, there are no links 
between nodes in Gtrain and nodes in Gtest. Therefore, 
no links connect the training and  test sets. 

In within-network classification, G is made up of a 
single connected component, which contains one or 
more labeled instances. The training set consists of all 
labeled nodes in G. The test set consists of all 
unlabeled nodes in G. In this setting, there are 
generally links between nodes in the training set and 
nodes in the test set. 

Between-network and within-network classification 
are common formulations of the network classification 
problem because they each represent important real-
world scenarios for classifiers. 

Between-network classification is an appropriate 
model for problems where we want to transfer 
knowledge from one data set to another. For example, 
we might train a model on a physics citation network 
and apply it to a computer science citation network or 
train a model on the communication graph for one 
company and apply it to the communication graph for 
another company. We may also want to train a model 
on a snapshot of a graph from a previous time slice and 
apply it to the most current snapshot. 

The within-network formulation also mirrors 
several real-world scenarios of interest. For instance, 
given information on calls made and received by cell 
phone users, we might want to identify fraudulent 
users. Within-network classification also makes sense 
in an "on-line" setting. In this scenario, we have a 
repository of data that grows and changes over time. 
When a new piece of data comes in, we'd like to be 
able to fill in missing information. 
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3. Between-network Classification 
 

A great deal of work on relational learning (and 
collective inference2) uses the between-network 
classification formulation for evaluation purposes. 

Sen and Getoor [16] refer to the between-network 
formulation as "training with fully labeled dataset" and 
provide a nice formal description of the problem. Their 
formulation specifies an inductive approach to the 
problem: "Our task is to learn a probability 
distribution…from the fully labeled training data and 
then apply this learned probability distribution to 
determine the most likely labeling assignment for 
Gtest." To the best of our knowledge, all methods 
applied in this setting to date employ such an inductive 
approach. 

In general, the between-network formulation of the 
problem presents more of a challenge to inference 
algorithms due to potential differences between the 
training and test graphs. Even assuming that the graphs 
are created by the same underlying process, random 
variation can cause important differences in graph 
structure, the distribution of attribute values, and 
correlations between different attributes or between 
attributes and graph structure. In general, inference 
algorithms may need more training data to perform 
well in the between-network setting than in the within-
network setting.  

Research that incorporates empirical evaluation 
based on the between-network formulation includes: 
Chakrabarti et al. [1], Neville and Jensen [10], Getoor 
et al. [4], Lu and Getoor [6], Jensen et al. [5], Neville 
and Jensen [12], and Sen and Getoor [16]. 

The between-network formulation makes the 
experimental methodology very simple. Since training 
and test sets are completely disconnected, the 
experimenter can easily vary the proportion of 
available labels at inference time completely 
independent of the training set size. This becomes 
more difficult in the within-network classification 
setting (see Section 4). 

In cases where the test graph is partially labeled, it 
is common to use these labels inputs for inference. 
However, there may be opportunities to take further 
advantage of labeled data in the test graph. For 
instance, these labels could be used directly as training 

                                                           
2 Collective inference (a.k.a. collective classification) works 
by simultaneously inferring the class labels (or other attribute 
values) of a set of related instances. The inference process 
can be viewed as a message passing algorithm, in which 
information propagates from neighbor to neighbor 
throughout the network. We refer the reader to Jensen at al. 
[5] for further details. 

examples or held out as a validation set to protect 
against overfitting the training graph. If there are major 
differences between training and test graphs, the 
labeled nodes in the test graph may actually provide 
higher quality examples than nodes in the training 
graph. 

 
4. Within-network Classification 
 

Experimental methodologies based on the within-
network formulation of the classification problem are 
widely used and more varied than their between-
network counterparts. 

It has been suggested that the within-network 
classification problem is transductive [7, 15, 16].  That 
is, the goal in this formulation is to merely classify the 
unlabeled data in G by using the labeled data.  This 
differs from the between-network formulation where 
the goal is to build a general model from a training set 
and use this model to classify a disconnected test set. 

Experimental setup in the within-network setting is 
somewhat more complicated than in the between-
network setting. Researchers generally start with a 
single fully labeled graph and then remove labels to 
simulate a partially labeled graph. To make the most of 
available data, approaches are often based on cross-
validation. Several studies use standard 10-fold cross 
validation, dividing the nodes in the graph into 10 
disjoint partitions and then labeling the nodes in 9 of 
the 10 partitions [5, 8, 13, 14]. Note that this 
partitioning is solely to determine which nodes are 
labeled and which are unlabeled for a particular 
experiment. The graph is not actually being broken 
into disconnected subgraphs (i.e., all links remain 
intact). 

The cross-validation approach begins to break 
down for experiments in which the proportion of 
labeled nodes is varied. There are several approaches 
used in this case. Taskar et al. [15] simply choose 5 
random train/test splits. Macskassy and Provost [9] 
perform a variation on 10-fold cross validation where 
the test sets begin to overlap as the test set size (i.e., 
the number of unlabeled instances) grows beyond 10% 
of the nodes in the graph. Both of these approaches 
have the drawback that some instances will be used as 
test cases more than others; thus, they carry more 
weight in the overall evaluation. Gallagher and Eliassi-
Rad [3] duplicate the methodology of Macskassy and 
Provost [9], but with one change. They carefully 
choose the test sets to ensure that each instance in the 
data set occurs in the same number of test sets over the 
course of 10 trials. With this setup, each instance is 
given the same weight in the overall evaluation, 
regardless of the proportion of labeled instances. 
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Neville and Jensen [11] present a somewhat more 
complex temporal variation on within-network 
classification. They split the nodes up by year into five 
temporal samples.3 For each test year, the model is 
trained on data from the previous year and during 
inference there are links from the test set to the fully 
labeled training set. However, links from the training 
set to the test set are not available at training time. 
Therefore, this approach can actually be thought of as 
a hybrid of between and within-network classification. 

Jensen at al. [5] present another variation on within-
network classification for their evaluation on yeast 
protein data. To obtain baseline accuracies, their 
methodology is the same aforementioned 10-fold cross 
validation approach. However, for experiments where 
they vary the proportion of labeled data, their 
methodology is somewhat different. Here, their 
approach is to always train on 90% of the data, but 
vary the proportion of labeled data available at 
inference time, and perform the evaluation on all 
unlabeled instances. While this approach achieves the 
desired effect of varying the proportion of labeled data 
available at inference time, it is potentially problematic 
because some of the instances used for evaluation are 
also used for training. The overlap between training 
and test sets increases as the proportion of labeled 
instances decreases. It is unclear to what extent this 
approach introduces bias in the reported results. 
However, our experiments in Section 5 demonstrate 
that this methodology can produce dramatically 
different results when compared with other approaches 
discussed here. In particular, this methodology can 
produce large increases in the performance of 
classifiers that employ collective inference. 

One potential drawback of the basic methodology 
used by most researchers for the within-network 
setting is that it does not separate the effects of training 
set size from those of the number of labeled instances 
available at classification (or inference) time. Note that 
varying the proportion of labeled instances has two 
effects: (1) it determines the number of labeled 
instances available for training and (2) it determines 
the number of labeled neighbors available during 
inference. We propose an alternate methodology that 
allows us to observe the effect of the amount of labeled 
instances at inference time, independent of training set 
size. To the best of our knowledge, this is a novel 
methodology for the evaluation of relational classifiers. 

Our proposed methodology is very similar to that 
used by Gallagher and Eliassi-Rad [3]. The only 
difference is that instead of training on all labeled data, 

                                                           
3 Note that not all graph data are accompanied by temporal 
information. 

we always train on a fixed subset of labeled data 
consisting of 10% of the total instances (labeled and 
unlabeled). All labeled nodes are still available at 
inference time. This allows us to vary the proportion 
labeled at inference time without affecting the training 
set size. The main drawback to this approach is that it 
assumes that 10% of the available data provides a 
sufficient amount of training examples. If this is not 
the case (e.g., if the overall dataset is small), it may be 
difficult to generalize from the training data. 

 
5. Experimental Evaluation 

 
As discussed in Section 4, there are a number of 

variations on the basic methodology for within-
network classification. In this section, we illustrate 
some of the similarities and differences between these 
approaches empirically, using a within-network 
classification task on the Enron email data set [2]. 

We present results for the relational random forest 
(RRF) classifier proposed by Gallagher and Eliassi-
Rad [3]. We use two variants of the RRF model. The 
first variant is a simple conditional RRF that uses only 
attribute-based features. The second variant is 
identical, except that it incorporates collective 
inference using the iterative classification algorithm, as 
described by Gallagher and Eliassi-Rad [3].  We also 
borrow our classification task from their work and 
duplicate their experimental setup as closely as 
possible. In addition, we repeat these experiments with 
several other classifiers, all using the same set of 
relational features used by the RRF. These classifiers 
include logistic regression, naïve Bayes, and decision 
trees. These results are omitted, but illustrate the same 
general differences between methodologies that we see 
with the RRF model. 

We use a single continuous subgraph sampled from 
32-days worth of Enron emails, covering the period 
from 6/8/2001 to 7/10/2001. The subgraph consists of 
1K nodes and 14K links. The task is to identify the 
people in the graph that are Enron employees 
(Pr(enron) ≈ 0.76). Note that people who do not work 
at Enron get pulled into the graph by sending email to 
or receiving email from an Enron employee. 

Our general approach is to split the nodes in the 
graph into 10 non-overlapping partitions. For each 
experiment, we train on one set of these partitions and 
test on another set. The results we present for each 
proportion labeled are averaged over 10 trials, each 
using a different training/test split of the partitions. 
The specifics of which partitions are used for training 
and testing and the amount of labeled data available 
during learning and inference vary for each 



 5

methodology we evaluate. We describe each of these 
methodologies in more detail below. 

Figure 1 shows the results of our experiments in 
terms of the area under the Receiver Operating 
Characteristic (ROC) curve (AUC). For experiment 1a, 
we use the methodology described by Gallagher and 
Eliassi-Rad [3] in their study (as described in Section 
4). Experiment 1b is a variation on 1a where we train 
on only a subset of the labeled nodes equal to 10% of 
the total nodes in the graph. This allows us to isolate 
the effects of the amount of labeled data available at 
inference time from the amount of training data 
available during learning. From these results, it 
appears that most of the performance degradation we 
observe as the amount of labeled data decreases can be 
attributed to the availability of labels during inference. 
Having fewer training examples available for learning 
does not appear to have a major effect on this task. 

The experimental setup for 1c mirrors that of Jensen 
et al. [5] (also discussed in Section 4). Experiment 1d 
is a variation of 1c in which the evaluation is 
performed only on those instances that were held out 
from the training set, instead of on all unlabeled 
instances. We see that these methodologies 
dramatically boost the apparent benefit from collective 
inference. Note that in 1d, even though we do not 
evaluate our classifier on instances from the training 
set, many of the neighboring nodes that are unlabeled 
at inference time were also training examples. Since 
the collective inference algorithm fills in the labels of 
these neighboring nodes as it proceeds, the classifier 
using collective inference can still take advantage of 
the overlap between the training and test sets. 
 
6. Conclusions 

 
Experimental methodology for evaluating 

classifiers in a traditional propositional machine 
learning setting is fairly well understood and 
established. Experimental methodology for classifiers 
of relational data is not well studied and more difficult. 
In particular, the dependencies between data instances 
complicate the separation of data into training and test 
sets. 

Our literature survey of experiments on relational 
classifiers reveals two general methodologies based on 
two distinct formulations of the classification problem: 
(1) between-network classification and (2) within-
network classification. We explored a number of issues 
relating to differences between these two problem 
formulations. For within-network classification, we 
also presented experimental results, illustrating 
important similarities and differences among various 

methodologies. The differences are largely due to the 
bias introduced when training and test sets overlap. 
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(a) Train all labeled, test all unlabeled (b) Train 10%, test all unlabeled 

(c) Train 90%, unlabel some, test all unlabeled (d) Train 90%, unlabel some, test 10%  
 
Figure 1: A comparison of various experimental methodologies for within-network classification. 
The task is to identify Enron employees in an email graph using a relational random forest 
classifier [3] with collective inference (rrf+CI) and without collective inference (rrf). The 
methodologies are: (a) training on all labeled nodes in the graph and testing on all unlabeled 
nodes; (b) training on a portion of labeled nodes equal to 10% of the total nodes in the graph and 
testing on all unlabeled nodes; (c) training on 90% of the nodes in the graph, but only using the 
specified proportion of labels during inference. All nodes unlabeled during inference are used for 
evaluation; (d) training on 90% of the nodes in the graph, but only using the specified proportion 
of labels during inference. Only those nodes not used for training are used for evaluation. For (a) 
and (b), the same set of nodes in the graph is labeled according to the specified proportion for 
both learning and inference. For (c) and (d), the graph is labeled at 90% during learning and the 
specified proportion for inference. 
 

 


