
 1

An Examination of Experimental Methodology for
Classifiers of Relational Data

Brian Gallagher and Tina Eliassi-Rad
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Box 808, L-560, Livermore, CA 94551

{bgallagher, eliassi}@llnl.gov

Abstract

Experimental methodology for evaluating

classification algorithms in relational (i.e., networked)
data is complicated by dependencies between related
data instances. We survey the literature on relational
classifiers and examine the various experimental
methodologies reported therein. Our survey reveals
that methodologies fall into two main groups, based on
distinct formulations of the classification problem: (1)
between-network classification and (2) within-network
classification. While the methodology for the between-
network setting is relatively straightforward,
methodologies for within-network classification are
more complex and varied. We explore a number of
these variations and present experimental results to
illustrate important similarities and differences among
different methodologies for within-network
classification.

1. Introduction

Traditional classification techniques utilize

dependencies between attributes of a single data
instance to infer unknown values of an attribute of
interest (a.k.a. the class label). Relational classifiers
improve classification performance by taking
advantage of dependencies between attributes of
related instances. While these inter-instance
dependencies can provide a great deal of useful
information in a classification setting, they also
complicate the experimental methodology used for the
evaluation of relational classifiers.

In traditional classification problems, each instance
is represented as a vector of attribute values or as a
row in a table. Instances are assumed to be

independent in the sense that there is no correlation
between attribute values of separate instances (i.e.,
there are assumed to be correlations within each row,
but none across rows). In relational classification
problems, an instance is often represented as a single
attributed node in a network of nodes. In this setting,
individual nodes are connected to one another by links
representing some relationship between the nodes. For
instance, nodes may represent people and links may
represent friendships between people.

A common strategy for evaluating traditional
machine learning techniques is to partition a fully
labeled data set into disjoint training and test sets. A
classifier is trained using each example from the
training set and then evaluated by removing the true
class labels from the test set and measuring how
accurately the classifier can recover the test labels. In
the case of relational data, if we simply partition the
nodes in a network (i.e., the instances) into completely
disconnected sets, we risk altering the structure of the
network in significant ways that may affect the
performance of a relational classifier. Put another way,
since the connections between instances in relational
data are an important source of information, care must
be exercised to avoid severing important connections.
Any reasonable experimental methodology for
classification in relational data must take into account
the dependencies between instances.

In this paper, we survey the literature to gain insight
into the experimental methodology employed by
various researchers of relational classification
techniques. Section 2 introduces a generalized version
of the network classification problem and presents the
two most common methodological variants from the
literature in terms of this generalized problem
formulation. Sections 3 and 4 describe, in more detail,
each of these common variants: between-network

 2

classification and within-network classification. In
Section 5, we present results from various
methodologies on a classification task for the Enron
email data set. Our results illustrate important
similarities and differences between the various
methodologies discussed. Section 6 concludes the
paper.

2. Network Classification

Relational data are naturally represented as
networks of attributed nodes (representing concepts)
and links (representing relations between concepts).
Network classification involves inferring unknown
values of the attributes of nodes or links in a network
(a.k.a. "labeling" unlabeled nodes or links). To date,
most researchers have focused on labeling nodes rather
than links. Therefore, this survey takes a node-centric
view as well.

A survey of the literature on relational
classification reveals two related, but distinct,
formulations of the network classification problem.
We refer to these as between-network classification
and within-network classification, respectively. We
suggest that both the between and within-network
formulations of the problem are actually special cases
of a more general problem formulation. Here we
present the generalized formulation and then use it
describe the more specific formulations.

In the generalized network classification problem,
we are given a single graph1 G, which contains zero or
more labeled nodes and one or more unlabeled nodes.
Our task is to label a specific subset of the unlabeled
nodes in G (i.e., the "test set"). This general
formulation leaves room for a number of variations,
including:

1. G may consist of a single connected
component, or two or more disconnected
fragments. Note that there is no requirement
for G to have any links.

2. The test set may include all unlabeled nodes in
G or a proper subset of the unlabeled nodes.

3. Individual nodes in the test set may or may not
have links to labeled nodes in the training set.

4. Individual nodes in the test set may or may not
have non-class attributes with known values
(such as education level when the class
attribute is job title).

1 We use the terms relational data, networked data, and graph
interchangeably.

5. The problem may be solved using induction
(i.e., learning a general statistical model from
the training data and using it to classify future
data) or transduction (i.e., classifying a
particular set of test instances from the training
instances). In fact, the generalized formulation
says nothing about how the problem should be
solved, leaving open the possibility of
unsupervised approaches, etc. Note that when
the number of labeled instances is zero, the
problem necessitates an unsupervised
approach.

In between-network classification, G is made up of
two connected components, Gtrain and Gtest, which are
disconnected from one another. Gtrain is fully labeled
and Gtest is partially labeled (i.e., Gtest contains zero or
more labeled nodes). The training set consists of all
nodes in Gtrain. The test set consists of all unlabeled
nodes in Gtest. In this setting, there are no links
between nodes in Gtrain and nodes in Gtest. Therefore,
no links connect the training and test sets.

In within-network classification, G is made up of a
single connected component, which contains one or
more labeled instances. The training set consists of all
labeled nodes in G. The test set consists of all
unlabeled nodes in G. In this setting, there are
generally links between nodes in the training set and
nodes in the test set.

Between-network and within-network classification
are common formulations of the network classification
problem because they each represent important real-
world scenarios for classifiers.

Between-network classification is an appropriate
model for problems where we want to transfer
knowledge from one data set to another. For example,
we might train a model on a physics citation network
and apply it to a computer science citation network or
train a model on the communication graph for one
company and apply it to the communication graph for
another company. We may also want to train a model
on a snapshot of a graph from a previous time slice and
apply it to the most current snapshot.

The within-network formulation also mirrors
several real-world scenarios of interest. For instance,
given information on calls made and received by cell
phone users, we might want to identify fraudulent
users. Within-network classification also makes sense
in an "on-line" setting. In this scenario, we have a
repository of data that grows and changes over time.
When a new piece of data comes in, we'd like to be
able to fill in missing information.

 3

3. Between-network Classification

A great deal of work on relational learning (and
collective inference2) uses the between-network
classification formulation for evaluation purposes.

Sen and Getoor [16] refer to the between-network
formulation as "training with fully labeled dataset" and
provide a nice formal description of the problem. Their
formulation specifies an inductive approach to the
problem: "Our task is to learn a probability
distribution…from the fully labeled training data and
then apply this learned probability distribution to
determine the most likely labeling assignment for
Gtest." To the best of our knowledge, all methods
applied in this setting to date employ such an inductive
approach.

In general, the between-network formulation of the
problem presents more of a challenge to inference
algorithms due to potential differences between the
training and test graphs. Even assuming that the graphs
are created by the same underlying process, random
variation can cause important differences in graph
structure, the distribution of attribute values, and
correlations between different attributes or between
attributes and graph structure. In general, inference
algorithms may need more training data to perform
well in the between-network setting than in the within-
network setting.

Research that incorporates empirical evaluation
based on the between-network formulation includes:
Chakrabarti et al. [1], Neville and Jensen [10], Getoor
et al. [4], Lu and Getoor [6], Jensen et al. [5], Neville
and Jensen [12], and Sen and Getoor [16].

The between-network formulation makes the
experimental methodology very simple. Since training
and test sets are completely disconnected, the
experimenter can easily vary the proportion of
available labels at inference time completely
independent of the training set size. This becomes
more difficult in the within-network classification
setting (see Section 4).

In cases where the test graph is partially labeled, it
is common to use these labels inputs for inference.
However, there may be opportunities to take further
advantage of labeled data in the test graph. For
instance, these labels could be used directly as training

2 Collective inference (a.k.a. collective classification) works
by simultaneously inferring the class labels (or other attribute
values) of a set of related instances. The inference process
can be viewed as a message passing algorithm, in which
information propagates from neighbor to neighbor
throughout the network. We refer the reader to Jensen at al.
[5] for further details.

examples or held out as a validation set to protect
against overfitting the training graph. If there are major
differences between training and test graphs, the
labeled nodes in the test graph may actually provide
higher quality examples than nodes in the training
graph.

4. Within-network Classification

Experimental methodologies based on the within-
network formulation of the classification problem are
widely used and more varied than their between-
network counterparts.

It has been suggested that the within-network
classification problem is transductive [7, 15, 16]. That
is, the goal in this formulation is to merely classify the
unlabeled data in G by using the labeled data. This
differs from the between-network formulation where
the goal is to build a general model from a training set
and use this model to classify a disconnected test set.

Experimental setup in the within-network setting is
somewhat more complicated than in the between-
network setting. Researchers generally start with a
single fully labeled graph and then remove labels to
simulate a partially labeled graph. To make the most of
available data, approaches are often based on cross-
validation. Several studies use standard 10-fold cross
validation, dividing the nodes in the graph into 10
disjoint partitions and then labeling the nodes in 9 of
the 10 partitions [5, 8, 13, 14]. Note that this
partitioning is solely to determine which nodes are
labeled and which are unlabeled for a particular
experiment. The graph is not actually being broken
into disconnected subgraphs (i.e., all links remain
intact).

The cross-validation approach begins to break
down for experiments in which the proportion of
labeled nodes is varied. There are several approaches
used in this case. Taskar et al. [15] simply choose 5
random train/test splits. Macskassy and Provost [9]
perform a variation on 10-fold cross validation where
the test sets begin to overlap as the test set size (i.e.,
the number of unlabeled instances) grows beyond 10%
of the nodes in the graph. Both of these approaches
have the drawback that some instances will be used as
test cases more than others; thus, they carry more
weight in the overall evaluation. Gallagher and Eliassi-
Rad [3] duplicate the methodology of Macskassy and
Provost [9], but with one change. They carefully
choose the test sets to ensure that each instance in the
data set occurs in the same number of test sets over the
course of 10 trials. With this setup, each instance is
given the same weight in the overall evaluation,
regardless of the proportion of labeled instances.

 4

Neville and Jensen [11] present a somewhat more
complex temporal variation on within-network
classification. They split the nodes up by year into five
temporal samples.3 For each test year, the model is
trained on data from the previous year and during
inference there are links from the test set to the fully
labeled training set. However, links from the training
set to the test set are not available at training time.
Therefore, this approach can actually be thought of as
a hybrid of between and within-network classification.

Jensen at al. [5] present another variation on within-
network classification for their evaluation on yeast
protein data. To obtain baseline accuracies, their
methodology is the same aforementioned 10-fold cross
validation approach. However, for experiments where
they vary the proportion of labeled data, their
methodology is somewhat different. Here, their
approach is to always train on 90% of the data, but
vary the proportion of labeled data available at
inference time, and perform the evaluation on all
unlabeled instances. While this approach achieves the
desired effect of varying the proportion of labeled data
available at inference time, it is potentially problematic
because some of the instances used for evaluation are
also used for training. The overlap between training
and test sets increases as the proportion of labeled
instances decreases. It is unclear to what extent this
approach introduces bias in the reported results.
However, our experiments in Section 5 demonstrate
that this methodology can produce dramatically
different results when compared with other approaches
discussed here. In particular, this methodology can
produce large increases in the performance of
classifiers that employ collective inference.

One potential drawback of the basic methodology
used by most researchers for the within-network
setting is that it does not separate the effects of training
set size from those of the number of labeled instances
available at classification (or inference) time. Note that
varying the proportion of labeled instances has two
effects: (1) it determines the number of labeled
instances available for training and (2) it determines
the number of labeled neighbors available during
inference. We propose an alternate methodology that
allows us to observe the effect of the amount of labeled
instances at inference time, independent of training set
size. To the best of our knowledge, this is a novel
methodology for the evaluation of relational classifiers.

Our proposed methodology is very similar to that
used by Gallagher and Eliassi-Rad [3]. The only
difference is that instead of training on all labeled data,

3 Note that not all graph data are accompanied by temporal
information.

we always train on a fixed subset of labeled data
consisting of 10% of the total instances (labeled and
unlabeled). All labeled nodes are still available at
inference time. This allows us to vary the proportion
labeled at inference time without affecting the training
set size. The main drawback to this approach is that it
assumes that 10% of the available data provides a
sufficient amount of training examples. If this is not
the case (e.g., if the overall dataset is small), it may be
difficult to generalize from the training data.

5. Experimental Evaluation

As discussed in Section 4, there are a number of

variations on the basic methodology for within-
network classification. In this section, we illustrate
some of the similarities and differences between these
approaches empirically, using a within-network
classification task on the Enron email data set [2].

We present results for the relational random forest
(RRF) classifier proposed by Gallagher and Eliassi-
Rad [3]. We use two variants of the RRF model. The
first variant is a simple conditional RRF that uses only
attribute-based features. The second variant is
identical, except that it incorporates collective
inference using the iterative classification algorithm, as
described by Gallagher and Eliassi-Rad [3]. We also
borrow our classification task from their work and
duplicate their experimental setup as closely as
possible. In addition, we repeat these experiments with
several other classifiers, all using the same set of
relational features used by the RRF. These classifiers
include logistic regression, naïve Bayes, and decision
trees. These results are omitted, but illustrate the same
general differences between methodologies that we see
with the RRF model.

We use a single continuous subgraph sampled from
32-days worth of Enron emails, covering the period
from 6/8/2001 to 7/10/2001. The subgraph consists of
1K nodes and 14K links. The task is to identify the
people in the graph that are Enron employees
(Pr(enron) ≈ 0.76). Note that people who do not work
at Enron get pulled into the graph by sending email to
or receiving email from an Enron employee.

Our general approach is to split the nodes in the
graph into 10 non-overlapping partitions. For each
experiment, we train on one set of these partitions and
test on another set. The results we present for each
proportion labeled are averaged over 10 trials, each
using a different training/test split of the partitions.
The specifics of which partitions are used for training
and testing and the amount of labeled data available
during learning and inference vary for each

 5

methodology we evaluate. We describe each of these
methodologies in more detail below.

Figure 1 shows the results of our experiments in
terms of the area under the Receiver Operating
Characteristic (ROC) curve (AUC). For experiment 1a,
we use the methodology described by Gallagher and
Eliassi-Rad [3] in their study (as described in Section
4). Experiment 1b is a variation on 1a where we train
on only a subset of the labeled nodes equal to 10% of
the total nodes in the graph. This allows us to isolate
the effects of the amount of labeled data available at
inference time from the amount of training data
available during learning. From these results, it
appears that most of the performance degradation we
observe as the amount of labeled data decreases can be
attributed to the availability of labels during inference.
Having fewer training examples available for learning
does not appear to have a major effect on this task.

The experimental setup for 1c mirrors that of Jensen
et al. [5] (also discussed in Section 4). Experiment 1d
is a variation of 1c in which the evaluation is
performed only on those instances that were held out
from the training set, instead of on all unlabeled
instances. We see that these methodologies
dramatically boost the apparent benefit from collective
inference. Note that in 1d, even though we do not
evaluate our classifier on instances from the training
set, many of the neighboring nodes that are unlabeled
at inference time were also training examples. Since
the collective inference algorithm fills in the labels of
these neighboring nodes as it proceeds, the classifier
using collective inference can still take advantage of
the overlap between the training and test sets.

6. Conclusions

Experimental methodology for evaluating

classifiers in a traditional propositional machine
learning setting is fairly well understood and
established. Experimental methodology for classifiers
of relational data is not well studied and more difficult.
In particular, the dependencies between data instances
complicate the separation of data into training and test
sets.

Our literature survey of experiments on relational
classifiers reveals two general methodologies based on
two distinct formulations of the classification problem:
(1) between-network classification and (2) within-
network classification. We explored a number of issues
relating to differences between these two problem
formulations. For within-network classification, we
also presented experimental results, illustrating
important similarities and differences among various

methodologies. The differences are largely due to the
bias introduced when training and test sets overlap.

Acknowledgments

This work was performed under the auspices of the

U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-48. UCRL-CONF-233643.

References

[1] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced
hypertext categorization using hyperlinks,” In Proc. of ACM
SIGMOD Int’l Conf. on Management of Data, 1998, pp. 307-
318.

[2] W.W. Cohen, “Enron email data set,”
http://www.cs.cmu.edu/~enron/.

[3] B. Gallagher and T. Eliassi-Rad, “Leveraging network
structure to infer missing values in relational data,”
Technical Report UCRL-TR-231993, Lawrence Livermore
National Laboratory, June 2007.

[4] L. Getoor, N. Friedman, D. Koller, and B. Taskar,
“Learning probabilistic models of link structure,” Journal of
Machine Learning Research, 3, 2002, pp. 679-707.

[5] D. Jensen, J. Neville, and B. Gallagher, “Why collective
inference improves relational classification,” In Proc. of the
10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), 2004, pp. 593-598.

[6] Q. Lu and L. Getoor, “Link-based classification,” In
Proc. of the 20th Int’l Conf. on Machine Learning (ICML),
2003, pp. 496-503.

[7] S. Macskassy, “Improving within-network classification
with local attributes,” In Workshop Papers on Text-Mining
and Link Analysis (Textlink) at the 20th Int’l Joint Conf. on
Artificial Intelligence (IJCAI), 2007.

[8] S. Macskassy and F. Provost, “A simple relational
classifier,” In Notes of the 2nd Workshop on Multi-relational
Data Mining at KDD, 2003.

[9] S. Macskassy and F. Provost, “Classification in
networked data: a toolkit and a univariate case study,”
Journal of Machine Learning Research, 2007 (to appear).

[10] J. Neville and D. Jensen, “Iterative classification in
relational data.” Learning Statistical Models From Relational
Data: Papers from the AAAI-00 Workshop. Menlo Park, CA:
AAAI Press. WS-00-06. pp. 42-49, 2000.

[11] J. Neville and D. Jensen, “Collective classification with
relational dependence networks,” In Proc. of the 2nd Multi-
Relational Data Mining Workshop (KDD-MRDM), 2003.

[12] J. Neville and D. Jensen, “Dependency networks for
relational data,” In Proc. of the 4th IEEE Int’l Conf. on Data
Mining (ICDM), 2004, pp. 170–177.

 6

[13] J. Neville, D. Jensen, L. Friedland, and M. Hay,
“Learning relational probability trees,” In Proc. of the 9th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), (2003), pp. 625-630.

[14] J. Neville, D. Jensen, and B. Gallagher, “Simple
estimators for relational Bayesian classifiers,” In Proc. of the
3rd IEEE Int’l Conf. on Data Mining (ICDM), 2003, pp.
609-612.

[15] B. Taskar, E. Segal, D. Koller, “Probabilistic
classification and clustering in relational data,” In Proc. Of
the 17th Int’l Joint Conf. on Artificial Intelligence (IJCAI),
2001, pp. 870-878.

[16] P. Sen and L. Getoor, “Link-based classification,”
Technical Report CS-TR-4858, University of Maryland,
College Park, MD, February 2007.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C rrf
rrf+CI

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C rrf
rrf+CI

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C rrf
rrf+CI

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

0.1 0.3 0.5 0.7 0.9

Proportion of Labeled Data

A
U

C rrf
rrf+CI

(a) Train all labeled, test all unlabeled (b) Train 10%, test all unlabeled

(c) Train 90%, unlabel some, test all unlabeled (d) Train 90%, unlabel some, test 10%

Figure 1: A comparison of various experimental methodologies for within-network classification.
The task is to identify Enron employees in an email graph using a relational random forest
classifier [3] with collective inference (rrf+CI) and without collective inference (rrf). The
methodologies are: (a) training on all labeled nodes in the graph and testing on all unlabeled
nodes; (b) training on a portion of labeled nodes equal to 10% of the total nodes in the graph and
testing on all unlabeled nodes; (c) training on 90% of the nodes in the graph, but only using the
specified proportion of labels during inference. All nodes unlabeled during inference are used for
evaluation; (d) training on 90% of the nodes in the graph, but only using the specified proportion
of labels during inference. Only those nodes not used for training are used for evaluation. For (a)
and (b), the same set of nodes in the graph is labeled according to the specified proportion for
both learning and inference. For (c) and (d), the graph is labeled at 90% during learning and the
specified proportion for inference.

